An Anchor-Based Pedestrian Navigation Approach Using Only Inertial Sensors
نویسندگان
چکیده
In inertial-based pedestrian navigation, anchors can effectively compensate the positioning errors originating from deviations of Inertial Measurement Units (IMUs), by putting constraints on pedestrians' motions. However, these anchors often need to be deployed beforehand, which can greatly increase system complexity, rendering it unsuitable for emergency response missions. In this paper, we propose an anchor-based pedestrian navigation approach without any additional sensors. The anchors are defined as the intersection points of perpendicular corridors and are considered characteristics of building structures. In contrast to these real anchors, virtual anchors are extracted from the pedestrian's trajectory and are considered as observations of real anchors, which can accordingly be regarded as inferred building structure characteristics. Then a Rao-Blackwellized particle filter (RBPF) is used to solve the joint estimation of positions (trajectory) and maps (anchors) problem. Compared with other building structure-based methods, our method has two advantages. The assumption on building structure is minimum and valid in most cases. Even if the assumption does not stand, the method will not lead to positioning failure. Several real-scenario experiments are conducted to validate the effectiveness and robustness of the proposed method.
منابع مشابه
Calibration of an Inertial Accelerometer using Trained Neural Network by Levenberg-Marquardt Algorithm for Vehicle Navigation
The designing of advanced driver assistance systems and autonomous vehicles needs measurement of dynamical variations of vehicle, such as acceleration, velocity and yaw rate. Designed adaptive controllers to control lateral and longitudinal vehicle dynamics are based on the measured variables. Inertial MEMS-based sensors have some benefits including low price and low consumption that make them ...
متن کاملAiding Low Cost Inertial Navigation with Building Heading for Pedestrian Navigation
In environments where GNSS is unavailable or not useful for positioning, the use of low cost MEMS-based inertial sensors has paved a way to a more cost effective solution. Of particular interest is a foot mounted pedestrian navigation system, where zero velocity updates (ZUPT) are used with the standard strapdown navigation algorithm in a Kalman filter to restrict the error growth of the low co...
متن کاملPerformance Enhancement of GPS/INS Integrated Navigation System Using Wavelet Based De-noising method
Accuracy of inertial navigation system (INS) is limited by inertial sensors imperfections. Before using inertial sensors signals in the data fusion algorithm, noise removal method should be performed, in which, wavelet decomposition method is used. In this method the raw data is decomposed into high and low frequency data sets. In this study, wavelet multi-level resolution analysis (WMRA) techn...
متن کاملA Zero Velocity Detection Algorithm Using Inertial Sensors for Pedestrian Navigation Systems
In pedestrian navigation systems, the position of a pedestrian is computed using an inertial navigation algorithm. In the algorithm, the zero velocity updating plays an important role, where zero velocity intervals are detected and the velocity error is reset. To use the zero velocity updating, it is necessary to detect zero velocity intervals reliably. A new zero detection algorithm is propose...
متن کاملImprovement of Navigation Accuracy using Tightly Coupled Kalman Filter
In this paper, a mechanism is designed for integration of inertial navigation system information (INS) and global positioning system information (GPS). In this type of system a series of mathematical and filtering algorithms with Tightly Coupled techniques with several objectives such as application of integrated navigation algorithms, precise calculation of flying object position, speed and at...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Sensors
دوره 16 3 شماره
صفحات -
تاریخ انتشار 2016